Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mitochondrial Commun ; 2: 14-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347884

RESUMO

While it has been shown that Ca2+ dynamics at the ER membrane is essential for the initiation of certain types of autophagy such as starvation-induced autophagy, how mitochondrial Ca2+ transport changes during the first stage of autophagy is not systemically characterized. An investigation of mitochondrial Ca2+ dynamics during autophagy initiation may help us determine the relationship between autophagy and mitochondrial Ca2+ fluxes. Here we examine acute mitochondrial and ER calcium responses to a panel of autophagy inducers in different cell types. Mitochondrial Ca2+ transport and Ca2+ transients at the ER membrane are triggered by different autophagy inducers. The mitophagy-inducer-initiated mitochondrial Ca2+ uptake relies on mitochondrial calcium uniporter and may decelerate the following mitophagy. In neurons derived from a Parkinson's patient, mitophagy-inducer-triggered mitochondrial Ca2+ influx is faster, which may slow the ensuing mitophagy.

2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 431-442, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403319

RESUMO

This paper aims to explore the inhibitory effect of Yueju Pills on breast cancer and decipher the underlying mechanism. A total of 92 SPF-grade SD female rats were involved in this study, and 14 of them were randomly selected into control group. The remaining 78 rats were administrated with 7,12-dimethylbenzanthracene(DMBA) by gavage to establish the breast cancer model. The modeled rats were randomized into model, tamoxifen(1.9 mg·kg~(-1)·d~(-1)), and low-and high-dose(17, 34 g·kg~(-1)·d~(-1)) Yueju Pills groups. The mental state, food intake, and activities of the rats were observed daily, and the body weight was measured on alternate days. After 12 weeks of administration, the rats were sacrificed and the tumor weight was measured. The serum estrogen and progeste-rone levels were determined by enzyme-linked immunosorbent assay. The histopathological changes of the breast and tumor were observed by hematoxylin-eosin staining. Western blot was employed to measure the protein levels of glucose transporter 1(GLUT1), lactate dehydrogenase A(LDHA), phosphofructokinase muscle(PFKM), pyruvate kinase isozyme type M2(PKM2), hexokinase 2(HK2), nuclear factor-kappaB(NF-κB), and phosphorylated NF-κB. The intestinal microbiome was examined by 16S rRNA high-throughput sequencing. The results showed that compared with the model group, high and low-dose Yueju Pills showed the tumor inhibition rate of 15.8% and 64.5%, respectively, and the low dose group had stronger inhibitory effect. Compared with the control group, the model group presented elevated the levels of estrogen and progesterone in serum. The administration of Yueju Pills lowered such ele-vation, and the low-dose group showed stronger lowering effect(P<0.05). Compared with the model group, Yueju Pills reduced the glands with increased breast tissue, the degree of breast duct expansion, the number and area of acinar cavity, the secretions, and the layers of mammary epithelial cells. Furthermore, Yueju Pills down-regulated the expression of GLUT1, LDHA, PFKM, PKM2, HK2, and NF-κB(P<0.05) and altered the diversity, composition, structure, and abundance of intestinal flora. The results showed that Yueju Pills could inhibit breast cancer by regulating the secretion of estrogen and progesterone, glycolysis, inflammatory cytokines, and intestinal flora.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Neoplasias , Ratos , Feminino , Animais , 9,10-Dimetil-1,2-benzantraceno/toxicidade , NF-kappa B/genética , Progesterona , Transportador de Glucose Tipo 1 , RNA Ribossômico 16S , Estrogênios
3.
Cogn Process ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421459

RESUMO

"Subitizing" defines a phenomenon whereby approximately four items can be quickly and accurately processed. Studies have shown the close association between subitizing and math performance, however, the mechanism for the association remains unclear. The present study was conducted to investigate whether form perception assessed on a serial figure matching task is a potential non-numerical mechanism between subitizing ability and math performance. Three-hundred and seventy-three Chinese primary school students completed four kinds of dot comparison tasks, serial figure matching task, math performance tasks (including three arithmetic computation tasks and math word problem task), and other cognitive tasks as their general cognitive abilities were observed as covariates. A series of hierarchical regression analyses showed that after controlling for age, gender, nonverbal matrix reasoning, and visual tracking, subitizing comparison (subitizing vs. subitizing, subitizing vs. estimation) still contributed to simple addition or simple subtraction but not to complex subtraction ability or math word problem. After taking form perception as an additional control variable, the predictive power of different dot comparison conditions disappeared. A path model also showed that form perception fully mediates the relation between numerosity comparison (within and beyond the subitizing range) and arithmetic performance. These findings support the claim that form perception is a non-numerical cognitive correlate of the relation between subitizing ability and math performance (especially arithmetic computation).

4.
Cell Rep ; 42(12): 113544, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060381

RESUMO

Dysregulated iron or Ca2+ homeostasis has been reported in Parkinson's disease (PD) models. Here, we discover a connection between these two metals at the mitochondria. Elevation of iron levels causes inward mitochondrial Ca2+ overflow, through an interaction of Fe2+ with mitochondrial calcium uniporter (MCU). In PD neurons, iron accumulation-triggered Ca2+ influx across the mitochondrial surface leads to spatially confined Ca2+ elevation at the outer mitochondrial membrane, which is subsequently sensed by Miro1, a Ca2+-binding protein. A Miro1 blood test distinguishes PD patients from controls and responds to drug treatment. Miro1-based drug screens in PD cells discover Food and Drug Administration-approved T-type Ca2+-channel blockers. Human genetic analysis reveals enrichment of rare variants in T-type Ca2+-channel subtypes associated with PD status. Our results identify a molecular mechanism in PD pathophysiology and drug targets and candidates coupled with a convenient stratification method.


Assuntos
Cálcio , Doença de Parkinson , Humanos , Cálcio/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Preparações Farmacêuticas/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo
5.
ACS Appl Bio Mater ; 6(10): 4430-4438, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37788183

RESUMO

We demonstrate a macromer-type bisepoxide, poly(ethylene glycol) diglycidyl ether, polymerizing readily with a trifunctional polyetheramine Jeffamine T-403 in water to facilitate the development of a series of microgels abbreviated as PMG. Simply by varying the concentration of the as-prepared thermoresponsive intermediate prepolymer from 1 to 2 and 4%, hydrodynamic sizes of the resulting P1MG, P2MG, and P4MG are easily tuned in the submicrometer to micrometer range shown by the dynamic light scattering results. Besides size difference, these microgels also deform differently, where the drying-induced deformation effect is most severe for P1MG and least prominent for P4MG. Simple evaporative deposition of PMG into multilayer packing provides versatile and green options for microgel-mediated surface structuring of agarose hydrogels. Specifically, deformabile P1MG- and P2MG-derived coatings render agarose gel microwrinkle textures by buckling against swelling-induced surface instability. Conversely, stiffer P4MG microgels lead to a patchy patterned hierarchical coating on agarose, similar to the cracking effect in drying colloidal films. The straightforward microgel-on-macrogel strategy allows integration of both wrinkle and patchy patterns to generate Janus-type agarose gels, just by rationally arranging the coating sequence. Diversifying topographic features attainable through microgel-based coatings on hydrogels could potentially make the sustainable and biocompatible material of agarose a more compelling choice for bioapplications. Brief demonstrations of the broad applicability of P1MG toward wrinkling of proteinaceous and synthetic hydrogels further highlight promising prospects of the PMG microgel-on-macrogel functionalization strategy.


Assuntos
Hidrogéis , Microgéis , Polietilenoglicóis , Sefarose , Materiais Biocompatíveis
6.
World J Pediatr ; 19(1): 76-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245067

RESUMO

BACKGROUND: The impact of pediatric body mass index (BMI) trajectories on the risk of adolescent hypertension (HTN) determined by three separate visits remains unclear. This longitudinal study aims to identify potential pediatric sex-specific BMI trajectories and to assess their associations with HTN and HTN subtypes. METHODS: Based on the Health Promotion Program for Children and Adolescents (HPPCA) in Suzhou, China, a total of 24,426 participants who had initial normal blood pressure (BP) and had at least four BMI measurements during 2012-2020 were included. HTN was defined as simultaneously having three separate visits of elevated BP in 2020. Latent class growth models were used to explore sex-specific BMI trajectories, whose associations with HTN and HTN subtypes were further examined by logistic regression. RESULTS: The incidence of HTN determined through three separate visits was 3.34%. Four trajectories were identified for both sexes: low BMI increasing, medium BMI increasing, high BMI increasing, and highest BMI increasing. Compared to the medium BMI increasing group, the odds ratio (95% confidential interval) for developing adolescent HTN of the low, high, and highest BMI increasing groups among boys were 0.54 (0.39, 0.75), 1.90 (1.44, 2.51), and 2.89 (1.90, 4.39), respectively; and the corresponding values for girls were 0.66 (0.48, 0.90), 2.30 (1.72, 3.09), and 4.71 (3.06, 7.26). Similar gradually elevated associations between different trajectories with isolated systolic hypertension, systolic and diastolic hypertension were observed. CONCLUSION: Current results emphasized the adverse effects of stable high BMI on HTN and the benefits of maintaining normal weight throughout childhood.


Assuntos
Hipertensão , Masculino , Criança , Feminino , Humanos , Adolescente , Índice de Massa Corporal , Estudos Longitudinais , Estudos Retrospectivos , Hipertensão/epidemiologia , China/epidemiologia , Fatores de Risco
7.
Metabolites ; 12(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144264

RESUMO

Fetal growth restriction (FGR) is a common complication of pregnancy and a significant cause of neonatal morbidity and mortality. The adverse effects of FGR can last throughout the entire lifespan and increase the risks of various diseases in adulthood. However, the etiology and pathogenesis of FGR remain unclear. This study comprehensively reviewed metabolomics studies related with FGR in pregnancy to identify potential metabolic biomarkers and pathways. Relevant articles were searched through two online databases (PubMed and Web of Science) from January 2000 to July 2022. The reported metabolites were systematically compared. Pathway analysis was conducted through the online MetaboAnalyst 5.0 software. For humans, a total of 10 neonatal and 14 maternal studies were included in this review. Several amino acids, such as alanine, valine, and isoleucine, were high frequency metabolites in both neonatal and maternal studies. Meanwhile, several pathways were suggested to be involved in the development of FGR, such as arginine biosynthesis, arginine, and proline metabolism, glyoxylate and dicarboxylate metabolism, and alanine, aspartate, and glutamate metabolism. In addition, we also included 8 animal model studies, in which three frequently reported metabolites (glutamine, phenylalanine, and proline) were also present in human studies. In general, this study summarized several metabolites and metabolic pathways which may help us to better understand the underlying metabolic mechanisms of FGR.

8.
Nat Metab ; 4(7): 802-812, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817853

RESUMO

Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.


Assuntos
Mitocôndrias , Neurônios , Homeostase , Mitocôndrias/metabolismo , Neurônios/metabolismo , Organelas/metabolismo
10.
Am J Prev Med ; 63(1 Suppl 1): S83-S92, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725146

RESUMO

INTRODUCTION: Breast cancer is a heterogeneous disease, consisting of multiple molecular subtypes. Obesity has been associated with an increased risk for postmenopausal breast cancer, but few studies have examined breast cancer subtypes separately. Obesity is often complicated by type 2 diabetes, but the possible association of diabetes with specific breast cancer subtypes remains poorly understood. METHODS: In this retrospective case-control study, Louisiana Tumor Registry records of primary invasive breast cancer diagnosed in 2010-2015 were linked to electronic health records in the Louisiana Public Health Institute's Research Action for Health Network. Controls were selected from Research Action for Health Network and matched to cases by age and race. Conditional logistic regression was used to identify metabolic risk factors. Data analysis was conducted in 2020‒2021. RESULTS: There was a significant association between diabetes and breast cancer for Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive subtypes. In multiple logistic regression, including both obesity status and diabetes as independent risk factors, Luminal A breast cancer was also associated with overweight status. Diabetes was associated with increased risk for Luminal A and Triple-Negative Breast Cancer in subgroup analyses, including women aged ≥50 years, Black women, and White women. CONCLUSIONS: Although research has identified obesity and diabetes as risk factors for breast cancer, these results underscore that comorbid risk is complex and may differ by molecular subtype. There was a significant association between diabetes and the incidence of Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive breast cancer in Louisiana.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Obesidade , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Incidência , Louisiana/epidemiologia , Obesidade/epidemiologia , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Fatores de Risco , Neoplasias de Mama Triplo Negativas/epidemiologia
11.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454886

RESUMO

BACKGROUND: Previous studies have shown that different alcoholic beverage types impact prostate cancer (PCa) clinical outcomes differently. However, intake patterns of specific alcoholic beverages for PCa status are understudied. The study's objective is to evaluate intake patterns of total alcohol and the three types of beverage (beer, wine, and spirits) by the PCa risk and aggressiveness status. METHOD: This is a cross-sectional study using 10,029 men (4676 non-PCa men and 5353 PCa patients) with European ancestry from the PCa consortium. Associations between PCa status and alcohol intake patterns (infrequent, light/moderate, and heavy) were tested using multinomial logistic regressions. RESULTS: Intake frequency patterns of total alcohol were similar for non-PCa men and PCa patients after adjusting for demographic and other factors. However, PCa patients were more likely to drink wine (light/moderate, OR = 1.11, p = 0.018) and spirits (light/moderate, OR = 1.14, p = 0.003; and heavy, OR = 1.34, p = 0.04) than non-PCa men. Patients with aggressive PCa drank more beer than patients with non-aggressive PCa (heavy, OR = 1.48, p = 0.013). Interestingly, heavy wine intake was inversely associated with PCa aggressiveness (OR = 0.56, p = 0.009). CONCLUSIONS: The intake patterns of some alcoholic beverage types differed by PCa status. Our findings can provide valuable information for developing custom alcohol interventions for PCa patients.

12.
Adv Sci (Weinh) ; 9(8): e2105395, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068078

RESUMO

The development of autonomous materials with desired performance and built-in visualizable sensing units is of great academic and industrial significance. Although a wide range of damage indication methods have been reported, the "turn-on" sensing mechanism by damaging events based on microcapsule systems, especially those relying on chemical reactions to elicit a chromogenic response, are still very limited. Herein, a facile and metal-free polymerization route with an interesting reaction-induced coloration effect is demonstrated. Under the catalysis of 1,4-diazabicyclo[2.2.2]octane (DABCO), the polymerizations of difunctional or trifunctional activated alkynes proceed very quickly at 0 °C in air. A series of polymers composed of stereoregular enyne structure (major unit) and divinyl ether structure (minor unit) are obtained. Both the catalyst and monomers are colorless while the polymerized products are deep-colored. This process can be applied for the damage visualization of polymers using the microencapsulation technique. Microcapsules containing the reactive alkyne monomer are prepared and mixed in a DABCO-dispersed polymer film. Both the external and internal damage regions of this composite film can be readily visualized once the reaction is initiated from the ruptured microcapsules. Moreover, the newly formed polymer automatically seals the cracks with an additional protection function.

13.
J Pharm Biomed Anal ; 208: 114461, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34775190

RESUMO

Liver toxicity induced by Triptolide (TP) has limited its clinical application on rheumatoid arthritis (RA). Saponins have been proved as an efficacious remedy to mitigate hepatotoxicity. However, the mechanism of reducing hepatotoxicity by saponins intervention remains incompletely characterized. Tryptophan (Trp) metabolites activate transcriptional regulators to mediate host detoxification responses. Our study aimed to investigate whether Clematichinenoside AR (C-AR) could attenuate TP-induced liver damage by regulating Trp metabolism. We used targeted metabolomics to quantify Trp metabolites in the serum and liver samples of collagen-induced arthritis rats treated by TP. Multiple comparison analyses helped the evaluation of promising biomarkers. The pronounced changed levels of Trp, indole acetic acid, and indole-3-carboxaldehyde in the serum and indole acetic acid, indole, and tryptamine in the liver are relevant to TP-induced liver injury. Intervention with C-AR could relieve TP-induced hepatotoxicity evidenced by ameliorative serum parameters and hepatic histology. In addition, C-AR regulated the levels of these indoles biomarker candidates to normal. Therapeutic modulation with natural compounds might be a useful clinical strategy to ameliorate toxicity induced by TP. Deciphering Trp metabolism will facilitate a better understanding of the pathogenesis of diseases and drug responding.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Fenantrenos , Saponinas , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Diterpenos/toxicidade , Compostos de Epóxi/toxicidade , Fígado , Fenantrenos/toxicidade , Ratos , Triterpenos , Triptofano
14.
Front Cell Dev Biol ; 9: 765408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805172

RESUMO

Mutations in MAPT gene cause multiple neurological disorders, including frontal temporal lobar degeneration and parkinsonism. Increasing evidence indicates impaired mitochondrial homeostasis and mitophagy in patients and disease models of pathogenic MAPT. Here, using MAPT patients' fibroblasts as a model, we report that disease-causing MAPT mutations compromise early events of mitophagy. By employing biochemical and mitochondrial assays we discover that upon mitochondrial depolarization, the recruitment of LRRK2 and Parkin to mitochondria and degradation of the outer mitochondrial membrane protein Miro1 are disrupted. Using high resolution electron microscopy, we reveal that the contact of mitochondrial membranes with ER and cytoskeleton tracks is dissociated following mitochondrial damage. This membrane dissociation is blocked by a pathogenic MAPT mutation. Furthermore, we provide evidence showing that tau protein, which is encoded by MAPT gene, interacts with Miro1 protein, and this interaction is abolished by pathogenic MAPT mutations. Lastly, treating fibroblasts of a MAPT patient with a small molecule promotes Miro1 degradation following depolarization. Altogether, our results show molecular defects in a peripheral tissue of patients and suggest that targeting mitochondrial quality control may have a broad application for future therapeutic intervention.

15.
Macromol Rapid Commun ; 42(24): e2100524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653283

RESUMO

Stemming from unique ring structures, heterocyclic polymers exhibit distinguished electrical, mechanical, and photophysical properties and have been widely used in a variety of important applications. Along with the technological significance are the challenges in their synthesis. Traditional synthetic strategies toward heterocyclic polymers often require the direct attachment of heterocycles to polymer backbones, which are generally limited by the lack of suitable and low-cost heterocyclic monomers, tedious reaction process, difficulties in incorporation of multiple substitutents, etc. Alternatively, in situ construction of heterocyclic polymers via triple-bond based polymerization offers promising prospects. This review summarized the recent progress on polymerizations of triple-bond based monomers including alkynes, nitriles, and isonitriles that can in situ generate heterocyclic polymers. The properties and advanced applications of the derived heterocyclic polymers will also be discussed. Finally, the future perspectives and challenges in this field will be addressed.


Assuntos
Polímeros , Polimerização
16.
Nanotechnology ; 33(5)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670212

RESUMO

Nanotechnology is widely used in targeted drug delivery, but different drug delivery systems need to 're-determine' different synthesis schemes, which greatly limits the further expansion of targeted nanomedicine applications. In this study, we propose a facile and versatile modular stacking strategy to fabricate targeted drug delivery systems to enable tailored designs for patient-specific therapeutic responses. The systems were constructed by a pH-sensitive prodrug module and a mitochondrial targeting module via self-assembly. Using this modular strategy, we successfully prepared two targeting nano-drug delivery systems, TPP-DOX and PK-DOX, where the mitochondrial targeting molecules were triphenylphosphonium (TPP) and 1-(2-Chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), respectively. Confocal laser microscopy and flow cytometry tests revealed that TPP-DOX and PK-DOX exhibited high mitochondria targeting capability and greatly improved the drug retention in drug-resistant cells. The antitumor activity tests showed that the IC50 values of TPP-DOX and PK-DOX in MCF-7/ADR cells were 2.5- and 8.2-fold lower than that of free DOX, respectively. These results indicated that PK was more effective than TPP. The studies on their therapeutic effects on human breast cancer resistant cells verified the feasibility of the modular approach, indicated that the two modular targeted drug delivery systems: (1) retain the drug toxicity and cell-killing effect of the prodrug module, (2) have precise targeting capabilities due to mitochondrial targeting module, (3) enhance drug uptake, reduce drug efflux and reverse the multidrug resistance effect to a certain extent. The results show that modular stacking is a practical, effective and versatile method for preparing targeting drugs with broad application prospects. This study provides an easy approach on preparing customizable targeted drug delivery systems to improve precision therapies.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanomedicina/métodos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia
17.
Nat Metab ; 3(9): 1242-1258, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504353

RESUMO

Mitochondria are the main site for generating reactive oxygen species, which are key players in diverse biological processes. However, the molecular pathways of redox signal transduction from the matrix to the cytosol are poorly defined. Here we report an inside-out redox signal of mitochondria. Cysteine oxidation of MIC60, an inner mitochondrial membrane protein, triggers the formation of disulfide bonds and the physical association of MIC60 with Miro, an outer mitochondrial membrane protein. The oxidative structural change of this membrane-crossing complex ultimately elicits cellular responses that delay mitophagy, impair cellular respiration and cause oxidative stress. Blocking the MIC60-Miro interaction or reducing either protein, genetically or pharmacologically, extends lifespan and health-span of healthy fruit flies, and benefits multiple models of Parkinson's disease and Friedreich's ataxia. Our discovery provides a molecular basis for common treatment strategies against oxidative stress.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Animais , Humanos , Oxirredução , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
18.
Front Mol Neurosci ; 14: 734273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434090

RESUMO

There is a lack of reliable molecular markers for Parkinson's disease (PD) patients and at-risk individuals. The detection of the pre-symptomatic population of PD will empower more effective clinical intervention to delay or prevent disease onset. We have previously found that the mitochondrial protein Miro1 is resistant to mitochondrial depolarization-induced degradation in fibroblasts from a large number of PD patients and several at-risk individuals. Therefore, Miro1 has the potential to molecularly label PD populations. In order to determine whether Miro1 could serve as a molecular marker for the risk of PD, here we examine the Miro1 response to mitochondrial depolarization by biochemical approaches in induced pluripotent stem cells from a cohort of at-risk individuals. Our results show that the Miro1 phenotype is significantly associated with PD risk. We propose that Miro1 is a promising molecular marker for detecting both PD and at-risk populations. Tracking this Miro1 marker could aid in diagnosis and Miro1-based drug discoveries.

19.
Nanomicro Lett ; 13(1): 144, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34138390

RESUMO

Recently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate "3D helix-2D sheet-1D fiber-0D dot" hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core-shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation.

20.
J Clin Med ; 10(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540941

RESUMO

Excessive alcohol intake is a well-known modifiable risk factor for many cancers. It is still unclear whether genetic variants or single nucleotide polymorphisms (SNPs) can modify alcohol intake's impact on prostate cancer (PCa) aggressiveness. The objective is to test the alcohol-SNP interactions of the 7501 SNPs in the four pathways (angiogenesis, mitochondria, miRNA, and androgen metabolism-related pathways) associated with PCa aggressiveness. We evaluated the impacts of three excessive alcohol intake behaviors in 3306 PCa patients with European ancestry from the PCa Consortium. We tested the alcohol-SNP interactions using logistic models with the discovery-validation study design. All three excessive alcohol intake behaviors were not significantly associated with PCa aggressiveness. However, the interactions of excessive alcohol intake and three SNPs (rs13107662 [CAMK2D, p = 6.2 × 10-6], rs9907521 [PRKCA, p = 7.1 × 10-5], and rs11925452 [ROBO1, p = 8.2 × 10-4]) were significantly associated with PCa aggressiveness. These alcohol-SNP interactions revealed contrasting effects of excessive alcohol intake on PCa aggressiveness according to the genotypes in the identified SNPs. We identified PCa patients with the rs13107662 (CAMK2D) AA genotype, the rs11925452 (ROBO1) AA genotype, and the rs9907521 (PRKCA) AG genotype were more vulnerable to excessive alcohol intake for developing aggressive PCa. Our findings support that the impact of excessive alcohol intake on PCa aggressiveness was varied by the selected genetic profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...